论文标题
部分可观测时空混沌系统的无模型预测
Dynamics of a relativistic jet through magnetized media
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The merger of two neutron stars (NSs) produces the emission of gravitational waves, the formation of a compact object surrounded by a dense and magnetized environment, and the launching of a collimated and relativistic jet, which will eventually produce a short gamma-ray burst (SGRB). The interaction of the jet with the environment has been shown to play a major role in shaping the structure of the outflow that eventually powers the gamma-ray emission. In this paper, we present a set of 2.5 dimensional RMHD simulations that follow the evolution of a relativistic non-magnetized jet through a medium with different magnetization levels, as produced after the merger of two NSs. We find that the predominant consequence of a magnetized ambient medium is that of suppressing instabilities within the jet, and preventing the formation of a series of collimation shocks. One implication of this is that internal shocks lose efficiency, causing bursts with low-luminosity prompt emission. On the other hand, the jet-head velocity and the induced magnetization within the jet are fairly independent from the magnetization of the ambient medium. Future numerical studies with a larger domain are necessary to obtain light curves and spectra in order to better understand the role of magnetized media.