论文标题
部分可观测时空混沌系统的无模型预测
D4-branes wrapped on four-dimensional orbifolds through consistent truncation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We construct a consistent truncation of six-dimensional matter coupled $F(4)$ gauged supergravity on a cornucopia of two-dimensional surfaces including a spindle, disc, domain wall and other novel backgrounds to four-dimensional minimal gauged supergravity. Using our consistent truncation we uplift known AdS$_2\times Σ_1$ solutions giving rise to four-dimensional orbifold solutions, AdS$_2\timesΣ_1\ltimesΣ_2$. We further uplift our solutions to massive type IIA supergravity by constructing the full uplift formulae for six-dimensional U$(1)^2$-gauged supergravity including all fields and arbitrary Romans mass and gauge coupling. The solutions we construct are naturally interpreted as the near-horizon geometries of asymptotically AdS$_6$ black holes with a four-dimensional orbifold horizon. Alternatively, one may view them as the holographic duals of superconformal quantum mechanical theories constructed by compactifying five-dimensional USp$(2N)$ theory living on a stack of D4-D8 branes on the four-dimensional orbifolds. As a first step to identifying these quantum mechanical theories we compute the Bekenstein--Hawking entropy holographically.