论文标题
部分可观测时空混沌系统的无模型预测
Extending Optical Flare Models to the UV: Results from Comparing of TESS and GALEX Flare Observations For M Dwarfs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The ultraviolet (UV) emission of stellar flares may have a pivotal role in the habitability of rocky exoplanets around low-mass stars. Previous studies have used white-light observations to calibrate empirical models which describe the optical and UV flare emission. However, the accuracy of the UV predictions of models have previously not been tested. We combined TESS optical and GALEX UV observations to test the UV predictions of empirical flare models calibrated using optical flare rates of M stars. We find that the canonical 9000 K blackbody model used by flare studies underestimates the GALEX NUV energies of field age M stars by up to a factor of 6.5$\pm$0.7 and the GALEX FUV energies of fully convective field age M stars by 30.6$\pm$10.0. We calculated energy correction factors that can be used to bring the UV predictions of flare models closer in line with observations. We calculated pseudo-continuum flare temperatures that describe both the white-light and GALEX NUV emission. We measured a temperature of 10,700 K for flares from fully convective M stars after accounting for the contribution from UV line emission. We also applied our correction factors to the results of previous studies of the role of flares in abiogenesis. Our results show that M stars do not need to be as active as previously thought in order to provide the NUV flux required for prebiotic chemistry, however we note that flares will also provide more FUV flux than previously modelled.