论文标题

驯服动荡:云风相互作用中湍流的温度依赖性

Taming the TuRMoiL: The Temperature Dependence of Turbulence in Cloud-Wind Interactions

论文作者

Abruzzo, Matthew W., Fielding, Drummond B., Bryan, Greg L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Turbulent radiative mixing layers (TRMLs) play an important role in many astrophysical contexts where cool ($\lesssim 10^4$ K) clouds interact with hot flows (e.g., galactic winds, high velocity clouds, infalling satellites in halos and clusters). The fate of these clouds (as well as many of their observable properties) is dictated by the competition between turbulence and radiative cooling; however, turbulence in these multiphase flows remains poorly understood. We have investigated the emergent turbulence arising in the interaction between clouds and supersonic winds in hydrodynamic ENZO-E simulations. In order to obtain robust results, we employed multiple metrics to characterize the turbulent velocity, $v_{\rm turb}$. We find four primary results, when cooling is sufficient for cloud survival. First, $v_{\rm turb}$ manifests clear temperature dependence. Initially, $v_{\rm turb}$ roughly matches the scaling of sound speed on temperature. In gas hotter than the temperature where cooling peaks, this dependence weakens with time until $v_{\rm turb}$ is constant. Second, the relative velocity between the cloud and wind initially drives rapid growth of $v_{\rm turb}$. As it drops (from entrainment), $v_{\rm turb}$ starts to decay before it stabilizes at roughly half its maximum. At late times cooling flows appear to support turbulence. Third, the magnitude of $v_{\rm turb}$ scales with the ratio between the hot phase sound crossing time and the minimum cooling time. Finally, we find tentative evidence for a length-scale associated with resolving turbulence. Under-resolving this scale may cause violent shattering and affect the cloud's large-scale morphological properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源