论文标题

3D表示的深层生成模型:调查

Deep Generative Models on 3D Representations: A Survey

论文作者

Shi, Zifan, Peng, Sida, Xu, Yinghao, Geiger, Andreas, Liao, Yiyi, Shen, Yujun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Generative models aim to learn the distribution of observed data by generating new instances. With the advent of neural networks, deep generative models, including variational autoencoders (VAEs), generative adversarial networks (GANs), and diffusion models (DMs), have progressed remarkably in synthesizing 2D images. Recently, researchers started to shift focus from 2D to 3D space, considering that 3D data is more closely aligned with our physical world and holds immense practical potential. However, unlike 2D images, which possess an inherent and efficient representation (\textit{i.e.}, a pixel grid), representing 3D data poses significantly greater challenges. Ideally, a robust 3D representation should be capable of accurately modeling complex shapes and appearances while being highly efficient in handling high-resolution data with high processing speeds and low memory requirements. Regrettably, existing 3D representations, such as point clouds, meshes, and neural fields, often fail to satisfy all of these requirements simultaneously. In this survey, we thoroughly review the ongoing developments of 3D generative models, including methods that employ 2D and 3D supervision. Our analysis centers on generative models, with a particular focus on the representations utilized in this context. We believe our survey will help the community to track the field's evolution and to spark innovative ideas to propel progress towards solving this challenging task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源