论文标题
利用Wikidata的编辑历史图表完善任务
Leveraging Wikidata's edit history in knowledge graph refinement tasks
论文作者
论文摘要
知识图已在许多不同的领域中用于各种目的。这些应用程序中的大多数都依靠有效和完整的数据来提供其结果,并敦促提高知识图的质量。已经提出了许多解决方案,从基于规则的方法到使用概率方法的使用,但是有一个尚未考虑的元素:图表的编辑历史记录。在协作知识图(例如Wikidata)的情况下,这些编辑代表了社区在最能代表每个实体的信息上达成某种模糊和分布的共识的过程,并且可以保留潜在的有趣信息,以通过知识图形改进方法使用。在本文中,我们探讨了Wikidata的编辑历史信息的使用来提高类型预测方法的性能。为此,我们首先构建了一个JSON数据集,其中包含Wikidata中100个最重要类的每个实例的编辑历史记录。然后,探索和分析此编辑历史信息,重点是其在知识图形完善任务中的潜在适用性。最后,我们提出并评估两种新方法,以在知识图嵌入模型中用于类型预测任务中的编辑历史信息。我们的结果表明,针对当前方法,提出的方法之一有所改善,显示了在知识图形完善任务中使用编辑信息并在现场开设新的有前途的研究行的潜力。
Knowledge graphs have been adopted in many diverse fields for a variety of purposes. Most of those applications rely on valid and complete data to deliver their results, pressing the need to improve the quality of knowledge graphs. A number of solutions have been proposed to that end, ranging from rule-based approaches to the use of probabilistic methods, but there is an element that has not been considered yet: the edit history of the graph. In the case of collaborative knowledge graphs (e.g., Wikidata), those edits represent the process in which the community reaches some kind of fuzzy and distributed consensus over the information that best represents each entity, and can hold potentially interesting information to be used by knowledge graph refinement methods. In this paper, we explore the use of edit history information from Wikidata to improve the performance of type prediction methods. To do that, we have first built a JSON dataset containing the edit history of every instance from the 100 most important classes in Wikidata. This edit history information is then explored and analyzed, with a focus on its potential applicability in knowledge graph refinement tasks. Finally, we propose and evaluate two new methods to leverage this edit history information in knowledge graph embedding models for type prediction tasks. Our results show an improvement in one of the proposed methods against current approaches, showing the potential of using edit information in knowledge graph refinement tasks and opening new promising research lines within the field.