论文标题
精确的捆绑匹配和通过多任务学习的一部分共享参数
Accurate Bundle Matching and Generation via Multitask Learning with Partially Shared Parameters
论文作者
论文摘要
我们如何才能准确推荐现有的捆绑包?我们如何为用户生成新的量身定制捆绑包?由于用户和提供商的满意度提高,建议捆绑包或一组各种项目引起了电子商务的广泛关注。捆绑匹配和捆绑包生成是捆绑建议中的两个代表性任务。捆绑匹配任务是将现有捆绑包正确匹配,而捆绑生成是生成用户更喜欢的新捆绑包。尽管许多最近的作品开发了捆绑建议模型,但由于它们没有有效地处理异质数据,并且没有学习定制捆绑包生成的方法,因此它们无法实现高精度。在本文中,我们提出了Bundlemage,这是捆绑匹配和生成的准确方法。 Bundlemage使用自适应门技术有效地将项目和捆绑包的用户偏好混合在一起,以实现捆绑匹配的高精度。 BundLemage还通过学习一个生成模块来利用用户喜好和要完成的不完整捆绑包的特征来生成个性化的捆绑包。 Bundlemage使用多任务学习和部分共享参数进一步提高了其性能。通过广泛的实验,我们表明,与最佳竞争对手相比,捆绑匹配中的Bundlemage在捆绑匹配中的NDCG高达6.6%,NDCG高6.3倍。我们还提供定性分析,该分析有效地考虑了用户的口味和目标捆绑包的特征。
How can we recommend existing bundles to users accurately? How can we generate new tailored bundles for users? Recommending a bundle, or a group of various items, has attracted widespread attention in e-commerce owing to the increased satisfaction of both users and providers. Bundle matching and bundle generation are two representative tasks in bundle recommendation. The bundle matching task is to correctly match existing bundles to users while the bundle generation is to generate new bundles that users would prefer. Although many recent works have developed bundle recommendation models, they fail to achieve high accuracy since they do not handle heterogeneous data effectively and do not learn a method for customized bundle generation. In this paper, we propose BundleMage, an accurate approach for bundle matching and generation. BundleMage effectively mixes user preferences of items and bundles using an adaptive gate technique to achieve high accuracy for the bundle matching. BundleMage also generates a personalized bundle by learning a generation module that exploits a user preference and the characteristic of a given incomplete bundle to be completed. BundleMage further improves its performance using multi-task learning with partially shared parameters. Through extensive experiments, we show that BundleMage achieves up to 6.6% higher nDCG in bundle matching and 6.3x higher nDCG in bundle generation than the best competitors. We also provide qualitative analysis that BundleMage effectively generates bundles considering both the tastes of users and the characteristics of target bundles.