论文标题

部分可观测时空混沌系统的无模型预测

Student-centric Model of Learning Management System Activity and Academic Performance: from Correlation to Causation

论文作者

Mandalapu, Varun, Chen, Lujie Karen, Shetty, Sushruta, Chen, Zhiyuan, Gong, Jiaqi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In recent years, there is a lot of interest in modeling students' digital traces in Learning Management System (LMS) to understand students' learning behavior patterns including aspects of meta-cognition and self-regulation, with the ultimate goal to turn those insights into actionable information to support students to improve their learning outcomes. In achieving this goal, however, there are two main issues that need to be addressed given the existing literature. Firstly, most of the current work is course-centered (i.e. models are built from data for a specific course) rather than student-centered; secondly, a vast majority of the models are correlational rather than causal. Those issues make it challenging to identify the most promising actionable factors for intervention at the student level where most of the campus-wide academic support is designed for. In this paper, we explored a student-centric analytical framework for LMS activity data that can provide not only correlational but causal insights mined from observational data. We demonstrated this approach using a dataset of 1651 computing major students at a public university in the US during one semester in the Fall of 2019. This dataset includes students' fine-grained LMS interaction logs and administrative data, e.g. demographics and academic performance. In addition, we expand the repository of LMS behavior indicators to include those that can characterize the time-of-the-day of login (e.g. chronotype). Our analysis showed that student login volume, compared with other login behavior indicators, is both strongly correlated and causally linked to student academic performance, especially among students with low academic performance. We envision that those insights will provide convincing evidence for college student support groups to launch student-centered and targeted interventions that are effective and scalable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源