论文标题

部分可观测时空混沌系统的无模型预测

Retrieving Users' Opinions on Social Media with Multimodal Aspect-Based Sentiment Analysis

论文作者

Anschütz, Miriam, Eder, Tobias, Groh, Georg

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

People post their opinions and experiences on social media, yielding rich databases of end-users' sentiments. This paper shows to what extent machine learning can analyze and structure these databases. An automated data analysis pipeline is deployed to provide insights into user-generated content for researchers in other domains. First, the domain expert can select an image and a term of interest. Then, the pipeline uses image retrieval to find all images showing similar content and applies aspect-based sentiment analysis to outline users' opinions about the selected term. As part of an interdisciplinary project between architecture and computer science researchers, an empirical study of Hamburg's Elbphilharmonie was conveyed. Therefore, we selected 300 thousand posts with the hashtag \enquote{\texttt{hamburg}} from the platform Flickr. Image retrieval methods generated a subset of slightly more than 1.5 thousand images displaying the Elbphilharmonie. We found that these posts mainly convey a neutral or positive sentiment towards it. With this pipeline, we suggest a new semantic computing method that offers novel insights into end-users opinions, e.g., for architecture domain experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源