论文标题
部分可观测时空混沌系统的无模型预测
Barbero--Immirzi--Holst Lagrangian with Spacetime Barbero--Immirzi Connections
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We carry out the complete variational analysis of the Barbero--Immirzi--Holst Lagrangian, which is the Holst Lagrangian expressed in terms of the triad of fields $(θ, A, κ)$, where $θ$ is the solder form/spin frame, $A$ is the spacetime Barbero--Immirzi connection, and $κ$ is the extrinsic spacetime field. The Holst Lagrangian depends on the choice of a real, non zero Holst parameter $γ\neq 0$ and constitutes the classical field theory which is then quantized in Loop Quantum Gravity. The choice of a real Immirzi parameter $β$ sets up a one-to-one correspondence between pairs $(A, κ)$ and spin connections $ω$ on spacetime. The variation of the Barbero--Immirzi--Holst Lagrangian is computed for an arbitrary pair of parameters $(β, γ)$. We develop and use the calculus of vector-valued differential forms to improve on the results already present in literature by better clarifying the geometric character of the resulting Euler--Lagrange equations. The main result is that the equations for $θ$ are equivalent to the vacuum Einstein Field Equations, while the equations for $A$ and $κ$ give the same constraint equation for any $β\in \mathbb{R}$, namely that $A + κ$ must be the Levi--Civita connection induced by $θ$. We also prove that these results are valid for any value of $γ\neq 0$, meaning that the choice of parameters $(β, γ)$ has no impact on the classical theory in a vacuum and, in particular, there is no need to set $β= γ$.