论文标题
部分可观测时空混沌系统的无模型预测
Alternating groups as products of cycle classes - II
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Given integers $k,l\geq 2$, where either $l$ is odd or $k$ is even, let $n(k,l)$ denote the largest integer $n$ such that each element of $A_n$ is a product of $k$ many $l$-cycles. In 2008, M. Herzog, G. Kaplan and A. Lev conjectured that $\lfloor \frac{2kl}{3} \rfloor \leq n(k,l)\leq \lfloor \frac{2kl}{3}\rfloor+1$. It is known that the conjecture holds when $k=2,3,4$. Moreover, it is also true when $3\mid l$. In this article, we determine the exact value of $n(k,l)$ when $3\nmid l$ and $k\geq 5$. As an immediate consequence, we get that $n(k,l)<\lfloor \frac{2kl}{3}\rfloor$ when $k\geq 5$, which shows that the above conjecture is not true in general. In fact, the difference between the exact value of $n(k,l)$ and the conjectured value grows linearly in terms of $k$. Our results also generalize the case of $k=2,3,4$.