论文标题
部分可观测时空混沌系统的无模型预测
Robust Data2vec: Noise-robust Speech Representation Learning for ASR by Combining Regression and Improved Contrastive Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Self-supervised pre-training methods based on contrastive learning or regression tasks can utilize more unlabeled data to improve the performance of automatic speech recognition (ASR). However, the robustness impact of combining the two pre-training tasks and constructing different negative samples for contrastive learning still remains unclear. In this paper, we propose a noise-robust data2vec for self-supervised speech representation learning by jointly optimizing the contrastive learning and regression tasks in the pre-training stage. Furthermore, we present two improved methods to facilitate contrastive learning. More specifically, we first propose to construct patch-based non-semantic negative samples to boost the noise robustness of the pre-training model, which is achieved by dividing the features into patches at different sizes (i.e., so-called negative samples). Second, by analyzing the distribution of positive and negative samples, we propose to remove the easily distinguishable negative samples to improve the discriminative capacity for pre-training models. Experimental results on the CHiME-4 dataset show that our method is able to improve the performance of the pre-trained model in noisy scenarios. We find that joint training of the contrastive learning and regression tasks can avoid the model collapse to some extent compared to only training the regression task.