论文标题

部分可观测时空混沌系统的无模型预测

A few-shot learning approach with domain adaptation for personalized real-life stress detection in close relationships

论文作者

Feng, Kexin, Duong, Jacqueline B., Carta, Kayla E., Walters, Sierra, Margolin, Gayla, Timmons, Adela C., Chaspari, Theodora

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We design a metric learning approach that aims to address computational challenges that yield from modeling human outcomes from ambulatory real-life data. The proposed metric learning is based on a Siamese neural network (SNN) that learns the relative difference between pairs of samples from a target user and non-target users, thus being able to address the scarcity of labelled data from the target. The SNN further minimizes the Wasserstein distance of the learned embeddings between target and non-target users, thus mitigating the distribution mismatch between the two. Finally, given the fact that the base rate of focal behaviors is different per user, the proposed method approximates the focal base rate based on labelled samples that lay closest to the target, based on which further minimizes the Wasserstein distance. Our method is exemplified for the purpose of hourly stress classification using real-life multimodal data from 72 dating couples. Results in few-shot and one-shot learning experiments indicate that proposed formulation benefits stress classification and can help mitigate the aforementioned challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源