论文标题
空间 - 周期性复发图神经网络,用于功能分配系统中的故障诊断
Spatial-Temporal Recurrent Graph Neural Networks for Fault Diagnostics in Power Distribution Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Fault diagnostics are extremely important to decide proper actions toward fault isolation and system restoration. The growing integration of inverter-based distributed energy resources imposes strong influences on fault detection using traditional overcurrent relays. This paper utilizes emerging graph learning techniques to build a new temporal recurrent graph neural network models for fault diagnostics. The temporal recurrent graph neural network structures can extract the spatial-temporal features from data of voltage measurement units installed at the critical buses. From these features, fault event detection, fault type/phase classification, and fault location are performed. Compared with previous works, the proposed temporal recurrent graph neural networks provide a better generalization for fault diagnostics. Moreover, the proposed scheme retrieves the voltage signals instead of current signals so that there is no need to install relays at all lines of the distribution system. Therefore, the proposed scheme is generalizable and not limited by the number of relays installed. The effectiveness of the proposed method is comprehensively evaluated on the Potsdam microgrid and IEEE 123-node system in comparison with other neural network structures.