论文标题

词典协助的监督对比学习

Dictionary-Assisted Supervised Contrastive Learning

论文作者

Wu, Patrick Y., Bonneau, Richard, Tucker, Joshua A., Nagler, Jonathan

论文摘要

社会科学中的文本分析通常涉及使用专门的词典来推理抽象概念,例如对经济的看法或社交媒体上的虐待。这些词典使研究人员能够传授域知识并记下与感兴趣概念有关的单词的微妙用法。我们介绍了词典辅助监督的对比度学习(DASCL)目标,使研究人员在微调审计的语言模型时可以利用专业的词典。文本是第一个关键字简化的:一个常见的固定令牌取代了与感兴趣概念相关的字典(IES)中出现的任何单词。在微调过程中,一个有监督的对比目标使同一类的原始和关键字简化文本的嵌入更加接近,同时进一步将不同类别的嵌入方式推开。同一类的关键字模拟文本在文本上比其原始文本对应物更相似,后者还将同一类的嵌入更紧密地绘制在一起。与单独使用跨凝性以及替代性对比度和数据增强方法相比,将DASCL和跨凝性结合在几乎没有学习环境和社会科学应用中改善了分类绩效指标。

Text analysis in the social sciences often involves using specialized dictionaries to reason with abstract concepts, such as perceptions about the economy or abuse on social media. These dictionaries allow researchers to impart domain knowledge and note subtle usages of words relating to a concept(s) of interest. We introduce the dictionary-assisted supervised contrastive learning (DASCL) objective, allowing researchers to leverage specialized dictionaries when fine-tuning pretrained language models. The text is first keyword simplified: a common, fixed token replaces any word in the corpus that appears in the dictionary(ies) relevant to the concept of interest. During fine-tuning, a supervised contrastive objective draws closer the embeddings of the original and keyword-simplified texts of the same class while pushing further apart the embeddings of different classes. The keyword-simplified texts of the same class are more textually similar than their original text counterparts, which additionally draws the embeddings of the same class closer together. Combining DASCL and cross-entropy improves classification performance metrics in few-shot learning settings and social science applications compared to using cross-entropy alone and alternative contrastive and data augmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源