论文标题
部分可观测时空混沌系统的无模型预测
Residual spectrum of $\mathrm{GL}_{2n}$ distinguished by $\mathrm{GL}_n \times \mathrm{GL}_n$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Following the regularization method presented by Zydor, we study in this paper the regularized linear periods of square-integrable automormphic forms on $\mathrm{GL}_{2n}(\mathbb{A}_F)$, where $F$ is a number field and $\mathbb{A}_F$ its ring of adeles. We obtain a formula that expresses the regularized period of a noncuspidal, square-integrable automorphic form in terms of degenerate Whittaker functions in an inductive manner. As a consequence we characterize irreducible automorphic representations in the discrete spectrum of $\mathrm{GL}_{2n}(\mathbb{A})$ that are distinguished by $\mathrm{GL}_n(\mathbb{A}) \times \mathrm{GL}_n(\mathbb{A})$. We also show the vanishing of the regularized periods of square-integrable automorphic forms on $\mathrm{GL}_n(\mathbb{A})$ over $\mathrm{GL}_p(\mathbb{A}) \times \mathrm{GL}_q(\mathbb{A})$ when $p$ is not equal to $q$.