论文标题

通过策略匹配与人类协调

Coordination with Humans via Strategy Matching

论文作者

Zhao, Michelle, Simmons, Reid, Admoni, Henny

论文摘要

人类和机器人合作伙伴越来越需要共同努力,以团队的身份执行任务。为这种协作而设计的机器人必须建议他们在协调实现共同目标时与人类团队成员的行为和技能相互竞争。我们在这项工作中的目标是开发一个计算框架,以适应人类机器人团队合作中的人类合作伙伴。我们首先提出了一种自主识别可用任务完成策略的算法,通过观察人类人类团队执行协作任务。通过使用隐藏的马尔可夫模型将团队的行动转换为低维表示,我们可以在没有先验知识的情况下确定策略。在每种确定的策略上都学会了机器人政策,以构建适应未见人类伴侣的任务策略的专家模型。我们使用过度煮熟的模拟器评估了关于协作烹饪任务的模型。与125名参与者的在线用户研究的结果表明,与最先进的强化学习方法相比,我们的框架改善了人类代理团队的任务绩效和协作流利度。

Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源