论文标题

部分可观测时空混沌系统的无模型预测

Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning Controlled Robotics and Autonomous Systems

论文作者

Dong, Yi, Zhao, Xingyu, Wang, Sen, Huang, Xiaowei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Deep Reinforcement Learning (DRL) has achieved impressive performance in robotics and autonomous systems (RAS). A key challenge to its deployment in real-life operations is the presence of spuriously unsafe DRL policies. Unexplored states may lead the agent to make wrong decisions that could result in hazards, especially in applications where DRL-trained end-to-end controllers govern the behaviour of RAS. This paper proposes a novel quantitative reliability assessment framework for DRL-controlled RAS, leveraging verification evidence generated from formal reliability analysis of neural networks. A two-level verification framework is introduced to check the safety property with respect to inaccurate observations that are due to, e.g., environmental noise and state changes. Reachability verification tools are leveraged locally to generate safety evidence of trajectories. In contrast, at the global level, we quantify the overall reliability as an aggregated metric of local safety evidence, corresponding to a set of distinct tasks and their occurrence probabilities. The effectiveness of the proposed verification framework is demonstrated and validated via experiments on real RAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源