论文标题

学习基于视觉的自动无人机赛车的深度感觉运动策略

Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone Racing

论文作者

Fu, Jiawei, Song, Yunlong, Wu, Yan, Yu, Fisher, Scaramuzza, Davide

论文摘要

自主无人机可以在远程和非结构化的环境中运行,从而实现各种现实世界的应用程序。但是,缺乏有效的基于视觉的算法一直是实现这一目标的绊脚石。现有系统通常需要手工设计的组件进行状态估计,计划和控制。这样的顺序设计涉及费力的调整,人类的启发式方法以及复杂的延迟和错误。本文通过学习深入的感觉运动策略来解决基于视觉的自动启动式式问题。我们使用对比度学习来从输入图像中提取强大的特征表示形式,并利用逐步学习的两阶段学习框架来培训神经网络政策。最终的策略将控制命令直接使用从原始图像中学到的特征表示,放弃了对全球一致的状态估计,轨迹计划和手工控制设计的需求。我们的实验结果表明,我们的基于愿景的政策可以达到与基于州的政策相同的赛车绩效,同时对不同的视觉障碍和干扰因素具有强大的态度。我们认为,这项工作是建立基于智能视觉的自主系统的垫脚石,这些系统纯粹是从像人类飞行员这样的图像输入中控制无人机的。

Autonomous drones can operate in remote and unstructured environments, enabling various real-world applications. However, the lack of effective vision-based algorithms has been a stumbling block to achieving this goal. Existing systems often require hand-engineered components for state estimation, planning, and control. Such a sequential design involves laborious tuning, human heuristics, and compounding delays and errors. This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies. We use contrastive learning to extract robust feature representations from the input images and leverage a two-stage learning-by-cheating framework for training a neural network policy. The resulting policy directly infers control commands with feature representations learned from raw images, forgoing the need for globally-consistent state estimation, trajectory planning, and handcrafted control design. Our experimental results indicate that our vision-based policy can achieve the same level of racing performance as the state-based policy while being robust against different visual disturbances and distractors. We believe this work serves as a stepping-stone toward developing intelligent vision-based autonomous systems that control the drone purely from image inputs, like human pilots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源