论文标题

部分可观测时空混沌系统的无模型预测

Nanoscale optical nonreciprocity with nonlinear metasurfaces

论文作者

Tripathi, Aditya, Ugwu, Chibuzor Fabian, Asadchy, Viktar S., Faniayeu, Ihar, Kravchenko, Ivan, Fan, Shanhui, Kivshar, Yuri, Valentine, Jason, Kruk, Sergey S.

论文摘要

光学的非肾脏表现为在激发方向相反方向的光的传播中的差异。传统上,非占地光学的光学是通过相对较大的组件(例如基于法拉第旋转的光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过二维纳米孔阵列组成的跨表面散发自由空间非偏置传输,由二氧化硅(vo2)杂交的硅形成器组成。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转向反应发生而无需外部偏见。取而代之的是,仅触发VO2相变的入射光即可以一个方向的率触发互惠。非偏置传输是在λ= 1.5 um附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据约0.1λ^3,跨表面厚度的测量约为半微米。我们的自偏纳米素剂在150 w/cm^2的阶段或每纳米纳米甲孔子上表现出非常低的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传播上升。我们的示范将低功率,宽带和无偏见的光学非转录为纳米级。

Optical nonreciprocity is manifested as a difference in the transmission of light for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation, hindering the miniaturization and integration of optical systems. Here we demonstrate free-space nonreciprocal transmission through a metasurface comprised of a two-dimensional array of nanoresonators made of silicon hybridized with vanadium dioxide (VO2). This effect arises from the magneto-electric coupling between Mie modes supported by the resonator. Nonreciprocal response of the nanoresonators occurs without the need for external bias; instead, reciprocity is broken by the incident light triggering the VO2 phase transition for only one direction of incidence. Nonreciprocal transmission is broadband covering over 100 nm in the telecommunication range in the vicinity of λ=1.5 um. Each nanoresonator unit cell occupies only about 0.1 λ^3 in volume, with the metasurface thickness measuring about half-a-micron. Our self-biased nanoresonators exhibit nonreciprocity down to very low levels of intensity on the order of 150 W/cm^2 or a uW per nanoresonator. We estimate picosecond-scale transmission fall times and sub-microsecond scale transmission rise. Our demonstration brings low-power, broadband and bias-free optical nonreciprocity to the nanoscale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源