论文标题
Vinl:障碍物的视觉导航和运动
ViNL: Visual Navigation and Locomotion Over Obstacles
论文作者
论文摘要
我们介绍了障碍物(VINL)的视觉导航和运动,这使四足动物的机器人可以在看不见的公寓中导航,同时跨越了路径上的小障碍物(例如,鞋子,玩具,电缆,电缆,电缆),类似于人类和宠物在步行时抬起脚上的脚。 VINL由:(1)输出线性和角速度命令的视觉导航策略,该命令将机器人引导到不熟悉的室内环境中的目标坐标; (2)一个视觉运动策略,该政策控制机器人的关节,以避免在提供速度命令时踩到障碍。这两种政策都是完全“无模型”的,即受过端到端的传感器对效果神经网络。两者在两个完全不同的模拟器中独立训练,然后通过将速度命令从导航器馈送到运动器中,完全“零射”(无需任何共同训练),通过将速度命令馈送到运动中。虽然先前的工作已经开发了用于视觉导航或视觉运动的学习方法,但据我们所知,这是首先学习的方法,它利用了视力来实现(1)在新环境中智能导航,以及(2)智能视觉运动,旨在遍历障碍环境而不打扰障碍物。关于在未知环境中导航到遥远目标的任务,Vinl仅使用以自我为中心的视觉在使用特权地形地图上明显优于在鲁棒球上的先前工作(+32.8%的成功和-4.42碰撞每米)。此外,我们消融了我们的运动政策,以表明我们的方法的各个方面有助于减少障碍碰撞。 http://www.joannetruong.com/projects/vinl.html上的视频和代码
We present Visual Navigation and Locomotion over obstacles (ViNL), which enables a quadrupedal robot to navigate unseen apartments while stepping over small obstacles that lie in its path (e.g., shoes, toys, cables), similar to how humans and pets lift their feet over objects as they walk. ViNL consists of: (1) a visual navigation policy that outputs linear and angular velocity commands that guides the robot to a goal coordinate in unfamiliar indoor environments; and (2) a visual locomotion policy that controls the robot's joints to avoid stepping on obstacles while following provided velocity commands. Both the policies are entirely "model-free", i.e. sensors-to-actions neural networks trained end-to-end. The two are trained independently in two entirely different simulators and then seamlessly co-deployed by feeding the velocity commands from the navigator to the locomotor, entirely "zero-shot" (without any co-training). While prior works have developed learning methods for visual navigation or visual locomotion, to the best of our knowledge, this is the first fully learned approach that leverages vision to accomplish both (1) intelligent navigation in new environments, and (2) intelligent visual locomotion that aims to traverse cluttered environments without disrupting obstacles. On the task of navigation to distant goals in unknown environments, ViNL using just egocentric vision significantly outperforms prior work on robust locomotion using privileged terrain maps (+32.8% success and -4.42 collisions per meter). Additionally, we ablate our locomotion policy to show that each aspect of our approach helps reduce obstacle collisions. Videos and code at http://www.joannetruong.com/projects/vinl.html