论文标题
拓扑SLEPIAN:信号的最大局部表示形式
Topological Slepians: Maximally Localized Representations of Signals over Simplicial Complexes
论文作者
论文摘要
本文介绍了拓扑SLEPIAN,即,在拓扑空间(例如,简单的复合物)上定义了一类新的信号,这些信号最大程度地集中在拓扑结构域(例如,在一组节点,边缘,三角形,三角形等)上,并且在双重域上局部化,并在双重域(例如,频率设置)。这些信号作为由适当的定位运算符构建的基质的主要特征向量获得,该矩阵构建了拓扑和频域的作用。然后,我们建议一种原则上的程序来构建拓扑slepians的字典,从理论上讲,该词典提供了非分类框架。最后,我们评估了提出的拓扑Slepian词典在两种应用中的有效性,即稀疏信号表示和边缘流的降解。
This paper introduces topological Slepians, i.e., a novel class of signals defined over topological spaces (e.g., simplicial complexes) that are maximally concentrated on the topological domain (e.g., over a set of nodes, edges, triangles, etc.) and perfectly localized on the dual domain (e.g., a set of frequencies). These signals are obtained as the principal eigenvectors of a matrix built from proper localization operators acting over topology and frequency domains. Then, we suggest a principled procedure to build dictionaries of topological Slepians, which theoretically provide non-degenerate frames. Finally, we evaluate the effectiveness of the proposed topological Slepian dictionary in two applications, i.e., sparse signal representation and denoising of edge flows.