论文标题

机器学习辅助设计和过渡金属掺入的碳量子点催化剂用于氢进化反应

Machine Learning Assisted Design and Optimization of Transition Metal-Incorporated Carbon Quantum Dot Catalysts for Hydrogen Evolution Reaction

论文作者

Nguyen, Duong Nguyen, Kim, Min-Cheol, Baeck, Unbeom, Lim, Jaehyoung, Shin, Namsoo, Kim, Jaekook, Choi, Heechae, Park, Ho Seok, Sim, Uk, Kim, Jung Kyu

论文摘要

开发具有出色的催化活性的成本效益氢进化反应(HER)催化剂,取代成本良好的高贵金属催化剂,对于实用的绿色氢生产至关重要。促进贵金属无金属催化剂催化性能的一种流行策略是将丰富的地球过渡金属(TM)原子掺入纳米碳平台中,例如碳量子点(CQD)。尽管数据驱动的催化剂设计方法可以显着加速TM元素掺杂的CQD(M@CQD)催化剂的合理设计,但它们却遭受了简化的理论模型或实验数据生成的复杂性和复杂性。在这项研究中,我们提出了一种基于机器学习(ML)(ML)和ML模型验证的有效且便利的催化剂设计策略,并使用电化学方法伴随着密度功能理论(DFT)模拟。基于贝叶斯遗传算法(BGA)ML模型,在三维还原的氧化石墨烯(3D RGO)导体上的Ni@CQD催化剂是在催化剂载荷,电极类型和电解液的最佳条件下作为催化剂的最佳催化剂。我们通过电化学实验验证了ML的结果,其中Ni@CQD催化剂表现出了优越的活性,要求超电势为189 mV,以实现10 mA CM-2,而Tafel斜率为52 mV DEC-1,而在酸性介质中具有令人印象深刻的耐用性。我们希望这种方法和Ni@CQD催化剂的出色性能为商业应用高度活性电催化剂的合理设计提供了有效的途径。

Development of cost-effective hydrogen evolution reaction (HER) catalysts with outstanding catalytic activity, replacing cost-prohibitive noble metal-based catalysts, is critical for practical green hydrogen production. A popular strategy for promoting the catalytic performance of noble metal-free catalysts is to incorporate earth-abundant transition metal (TM) atoms into nanocarbon platforms such as carbon quantum dots (CQDs). Although data-driven catalyst design methods can significantly accelerate the rational design of TM element-doped CQD (M@CQD) catalysts, they suffer from either a simplified theoretical model or the prohibitive cost and complexity of experimental data generation. In this study, we propose an effective and facile HER catalyst design strategy based on machine learning (ML) and ML model verification using electrochemical methods accompanied with density functional theory (DFT) simulations. Based on a Bayesian genetic algorithm (BGA) ML model, the Ni@CQD catalyst on a three-dimensional reduced graphene oxide (3D rGO) conductor is proposed as the best HER catalyst under the optimal conditions of catalyst loading, electrode type, and temperature and pH of electrolyte. We validate the ML results with electrochemical experiments, where the Ni@CQD catalyst exhibited superior HER activity, requiring an overpotential of 189 mV to achieve 10 mA cm-2 with a Tafel slope of 52 mV dec-1 and impressive durability in acidic media. We expect that this methodology and the excellent performance of the Ni@CQD catalyst provide an effective route for the rational design of highly active electrocatalysts for commercial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源