论文标题
通过概率表示,增强半监督语义分割
Boosting Semi-Supervised Semantic Segmentation with Probabilistic Representations
论文作者
论文摘要
通过对比度学习,已经建立了半监督语义分割的最新突破。在普遍的像素对比度学习解决方案中,模型映射像素以确定性表示并在潜在空间中正规化它们。但是,由于模型的认知能力有限,存在不准确的伪标签,这些标记为错误的类别。在本文中,我们从概率理论的新角度定义了像素的表示形式,并提出了概率表示对比度学习(PRCL)框架,该框架通过考虑其概率来提高表示质量。通过将从像素到表示形式的映射作为通过多元高斯分布的概率进行建模,我们可以调整模棱两可的表示的贡献,以容忍不准确的伪标签的风险。此外,我们以分布形式定义原型,这表明了类的信心,而点原型不能。此外,我们建议将分布差异正规化,以提高表示形式的可靠性。利用这些好处,可以在潜在空间中得出高质量的特征表示形式,从而可以进一步改善语义分割的性能。我们进行了足够的实验,以评估pascal VOC和CityScapes上的PRCL以证明其优越性。该代码可在https://github.com/haoyu-xie/prcl上找到。
Recent breakthroughs in semi-supervised semantic segmentation have been developed through contrastive learning. In prevalent pixel-wise contrastive learning solutions, the model maps pixels to deterministic representations and regularizes them in the latent space. However, there exist inaccurate pseudo-labels which map the ambiguous representations of pixels to the wrong classes due to the limited cognitive ability of the model. In this paper, we define pixel-wise representations from a new perspective of probability theory and propose a Probabilistic Representation Contrastive Learning (PRCL) framework that improves representation quality by taking its probability into consideration. Through modelling the mapping from pixels to representations as the probability via multivariate Gaussian distributions, we can tune the contribution of the ambiguous representations to tolerate the risk of inaccurate pseudo-labels. Furthermore, we define prototypes in the form of distributions, which indicates the confidence of a class, while the point prototype cannot. Moreover, we propose to regularize the distribution variance to enhance the reliability of representations. Taking advantage of these benefits, high-quality feature representations can be derived in the latent space, thereby the performance of semantic segmentation can be further improved. We conduct sufficient experiment to evaluate PRCL on Pascal VOC and CityScapes to demonstrate its superiority. The code is available at https://github.com/Haoyu-Xie/PRCL.