论文标题

基于高分辨率的3D图像分割,并具有高频指导

Super-Resolution Based Patch-Free 3D Image Segmentation with High-Frequency Guidance

论文作者

Wang, Hongyi, Lin, Lanfen, Hu, Hongjie, Chen, Qingqing, Li, Yinhao, Iwamoto, Yutaro, Han, Xian-Hua, Chen, Yen-Wei, Tong, Ruofeng

论文摘要

如今,高分辨率(HR)3D图像已被广泛使用,例如磁共振成像(MRI)和计算机断层扫描(CT)等医学图像。但是,与当前有限的GPU记忆相比,由于其高空间分辨率和维度,对这些3D图像的分割仍然是一个挑战。因此,大多数现有的3D图像分割方法都使用基于补丁的模型,这些模型的推理效率较低并忽略了全局上下文信息。为了解决这些问题,我们提出了一个基于超级分辨率的3D图像分割框架,该框架可以从全球低分辨率(LR)输入中实现HR分割。该框架包含两个子任务,其中语义分割是主要任务,超级分辨率是一项辅助任务,可帮助从LR输入重建高频信息。此外,为了将信息丢失与LR输入之间的平衡,我们提出了一个高频指导模块(HGM),并设计有效的选择性裁剪算法,以从原始图像作为其恢复指南中的HR补丁作裁剪。此外,我们还提出了一个任务融合模块(TFM),以利用分割和SR任务之间的相互作用,从而实现了两个任务的关节优化。预测时,仅需要主要的分割任务,而其他模块可以删除以进行加速。两个不同数据集的实验结果表明,与传统的基于补丁的方法相比,我们的框架的推理速度高四倍,而其性能也超过了其他基于补丁的模型。

High resolution (HR) 3D images are widely used nowadays, such as medical images like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). However, segmentation of these 3D images remains a challenge due to their high spatial resolution and dimensionality in contrast to currently limited GPU memory. Therefore, most existing 3D image segmentation methods use patch-based models, which have low inference efficiency and ignore global contextual information. To address these problems, we propose a super-resolution (SR) based patch-free 3D image segmentation framework that can realize HR segmentation from a global-wise low-resolution (LR) input. The framework contains two sub-tasks, of which semantic segmentation is the main task and super resolution is an auxiliary task aiding in rebuilding the high frequency information from the LR input. To furthermore balance the information loss with the LR input, we propose a High-Frequency Guidance Module (HGM), and design an efficient selective cropping algorithm to crop an HR patch from the original image as restoration guidance for it. In addition, we also propose a Task-Fusion Module (TFM) to exploit the inter connections between segmentation and SR task, realizing joint optimization of the two tasks. When predicting, only the main segmentation task is needed, while other modules can be removed for acceleration. The experimental results on two different datasets show that our framework has a four times higher inference speed compared to traditional patch-based methods, while its performance also surpasses other patch-based and patch-free models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源