论文标题
Rapidai4EO:单个和多个时空的深度学习模型,用于更新Corine Land Cover产品
RapidAI4EO: Mono- and Multi-temporal Deep Learning models for Updating the CORINE Land Cover Product
论文作者
论文摘要
在遥感社区中,用卫星图像的土地使用土地覆盖(LULC)分类是当前研究活动的主要重点。但是,准确且适当的LULC分类仍然是一项具有挑战性的任务。在本文中,我们使用Rapidai4EO数据集中的有监督学习,评估了多个时间(单个时间步长)卫星图像的多个时间(每月时间序列)的性能。作为第一步,我们在单个时间步长以进行多标签分类(即单速率)训练了CNN模型。我们使用LSTM模型合并了时间序列图像,以评估来自卫星的多颞信号是否改善了CLC分类。结果表明,与单个时间序列方法相比,在每月时间序列图像上,使用多个颞类方法对15个类别的卫星图像进行分类约为0.89%。使用多个时空图像或单个颞图像中的功能,这项工作是迈向有效的变更检测和土地监测方法的一步。
In the remote sensing community, Land Use Land Cover (LULC) classification with satellite imagery is a main focus of current research activities. Accurate and appropriate LULC classification, however, continues to be a challenging task. In this paper, we evaluate the performance of multi-temporal (monthly time series) compared to mono-temporal (single time step) satellite images for multi-label classification using supervised learning on the RapidAI4EO dataset. As a first step, we trained our CNN model on images at a single time step for multi-label classification, i.e. mono-temporal. We incorporated time-series images using a LSTM model to assess whether or not multi-temporal signals from satellites improves CLC classification. The results demonstrate an improvement of approximately 0.89% in classifying satellite imagery on 15 classes using a multi-temporal approach on monthly time series images compared to the mono-temporal approach. Using features from multi-temporal or mono-temporal images, this work is a step towards an efficient change detection and land monitoring approach.