论文标题

圆环一分线相关数量最小的liouville重力

Torus one-point correlation numbers in minimal Liouville gravity

论文作者

Artemev, Aleksandr, Belavin, Vladimir

论文摘要

我们提出了一种方法,以$(2,2p+1)$(2,2p+1)$最小的liouville重力定义的第一原理计算。该方法基于Liouville CFT中较高的运动方程式。这些方程较早地成功地用于球形拓扑中振幅的分析计算。我们表明,这种方法允许减少输入圆环振幅定义的模量积分,以明确计算到某些边界贡献。结果与矩阵模型方法中执行的计算一致。

We present a method for the first principles calculation of tachyon one-point amplitudes in $(2,2p+1)$ minimal Liouville gravity defined on a torus. The method is based on the higher equations of motion in the Liouville CFT. These equations were earlier successfully applied for analytic calculations of the amplitudes in the spherical topology. We show that this approach allows to reduce the moduli integrals entering the definition of the torus amplitudes to certain boundary contributions, which can be calculated explicitly. The results agree with the calculations performed in the matrix models approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源