论文标题

简报:用于检测幽灵漏洞和攻击的静态和微构造基于ML的方法

Short Paper: Static and Microarchitectural ML-Based Approaches For Detecting Spectre Vulnerabilities and Attacks

论文作者

Biringa, Chidera, Baye, Gaspard, Kul, Gökhan

论文摘要

Spectre Intrusions利用现代处理器中的投机性执行设计漏洞。攻击违反了程序中隔离的原则,以获取未经授权的私人用户信息。当前的最新检测技术利用微构造特征或脆弱的投机代码来检测这些威胁。但是,这些技术不足以使幽灵攻击与最近发现的绕过当前缓解机制的变体更加隐秘。侧通道在处理器缓存中产生不同的模式,敏感信息泄漏取决于易受幽灵攻击的源代码,在这种情况下,对手使用这些漏洞,例如造成数据泄露的分支预测。先前的研究主要使用微构造分析(一种反应性方法)来检测幽灵攻击。因此,在本文中,我们介绍了对静态和微体系分析辅助的机器学习方法的首次全面评估,以检测幽灵脆弱的代码段(预防性)和幽灵攻击(反应性)。我们评估了使用分类器来检测幽灵漏洞和攻击的性能权衡。

Spectre intrusions exploit speculative execution design vulnerabilities in modern processors. The attacks violate the principles of isolation in programs to gain unauthorized private user information. Current state-of-the-art detection techniques utilize micro-architectural features or vulnerable speculative code to detect these threats. However, these techniques are insufficient as Spectre attacks have proven to be more stealthy with recently discovered variants that bypass current mitigation mechanisms. Side-channels generate distinct patterns in processor cache, and sensitive information leakage is dependent on source code vulnerable to Spectre attacks, where an adversary uses these vulnerabilities, such as branch prediction, which causes a data breach. Previous studies predominantly approach the detection of Spectre attacks using the microarchitectural analysis, a reactive approach. Hence, in this paper, we present the first comprehensive evaluation of static and microarchitectural analysis-assisted machine learning approaches to detect Spectre vulnerable code snippets (preventive) and Spectre attacks (reactive). We evaluate the performance trade-offs in employing classifiers for detecting Spectre vulnerabilities and attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源