论文标题
话语意识到的情绪导致对话提取
Discourse-Aware Emotion Cause Extraction in Conversations
论文作者
论文摘要
情绪导致对话中的提取(ECEC)旨在提取包含对话中情感原因的话语。大多数先前的研究都专注于通过顺序编码对话环境进行建模,而忽略了ECEC的话语和特定于对话的特定特征之间的信息相互作用。在本文中,我们研究了话语结构在处理eCEC的特定于对话的特定功能中的重要性。为此,我们为此任务提出了一个话语感知模型(DAM)。具体而言,我们使用多任务学习(MTL)框架与话语解析共同对ECEC进行了解析,并通过门控图神经网络(Gated GNN)明确编码话语结构,将丰富的话语交互信息集成到我们的模型中。此外,我们使用门控GNN通过特定于对话的功能进一步增强了我们的ECEC模型。基准语料库上的结果表明,大坝的表现优于文献中最先进的(SOTA)系统。这表明话语结构可能包含情感话语与其相应原因表达之间的潜在联系。它还验证了对话特定特征的有效性。本文的代码将在GitHub上提供。
Emotion Cause Extraction in Conversations (ECEC) aims to extract the utterances which contain the emotional cause in conversations. Most prior research focuses on modelling conversational contexts with sequential encoding, ignoring the informative interactions between utterances and conversational-specific features for ECEC. In this paper, we investigate the importance of discourse structures in handling utterance interactions and conversationspecific features for ECEC. To this end, we propose a discourse-aware model (DAM) for this task. Concretely, we jointly model ECEC with discourse parsing using a multi-task learning (MTL) framework and explicitly encode discourse structures via gated graph neural network (gated GNN), integrating rich utterance interaction information to our model. In addition, we use gated GNN to further enhance our ECEC model with conversation-specific features. Results on the benchmark corpus show that DAM outperform the state-of-theart (SOTA) systems in the literature. This suggests that the discourse structure may contain a potential link between emotional utterances and their corresponding cause expressions. It also verifies the effectiveness of conversationalspecific features. The codes of this paper will be available on GitHub.