论文标题
欧几里得空间中的单位球振动
Unit sphere fibrations in Euclidean space
论文作者
论文摘要
我们表明,如果$ \ mathbb {r}^d $中的开放式设置可以由$ n $ -spheres的单位纤维纤维,则可以将$ d \ geq 2n+1 $进行,并且如果$ d = 2n+1 $,则必须成对链接球,$ n \ in \ in \ in \ in \ weft \ weft \ weft \ {0,1,1,3,7 \ right \ right \} $}。对于$ n $的这些值,我们在$ \ mathbb {r}^{2n+1} $中构建单位$ n $ -sphere纤维。
We show that if an open set in $\mathbb{R}^d$ can be fibered by unit $n$-spheres, then $d \geq 2n+1$, and if $d = 2n+1$, then the spheres must be pairwise linked, and $n \in \left\{ 0, 1, 3, 7 \right\}$. For these values of $n$, we construct unit $n$-sphere fibrations in $\mathbb{R}^{2n+1}$.