论文标题
压力性金刚坦的有序和无序阶段的动力学
Dynamics in the ordered and disordered phases of barocaloric adamantane
论文作者
论文摘要
高凝集订单二阶相变可用于有效且环保的压力型固态冷却。这里报道了在原型的塑料晶体中报道了高海世效应。 Adamantane具有106 J K-1 kg-1的巨大等热熵变化。极低的磁滞意味着可以在小于200 bar的压力差下访问这一点。配置熵只能占总熵变化的40%;其余是由于振动效应。使用中子光谱和超级晶格动力学计算,发现这种振动熵的变化主要是由于声学模式的高注射阶段的软化引起的,这与分子旋转相对应。我们将这种行为归因于在低渗透阶段的“互锁”状态与高室阶段中的球体行为之间的对比。尽管Adamantane是一种简单的范德华固体,具有近乎球体的分子,但可以利用这种方法来设计更复杂的低位分子晶体。此外,这项研究表明,超级晶格动力学计算可以准确映射定向障碍对声子频谱的影响,为研究振动熵,导热率和其他热力学效应铺平了道路。
High-entropy order-disorder phase transitions can be used for efficient and eco-friendly barocaloric solid-state cooling. Here the barocaloric effect is reported in an archetypal plastic crystal, adamantane. Adamantane has a colossal isothermally reversible entropy change of 106 J K-1 kg-1 . Extremely low hysteresis means that this can be accessed at pressure differences less than 200 bar. Configurational entropy can only account for about 40% of the total entropy change; the remainder is due to vibrational effects. Using neutron spectroscopy and supercell lattice dynamics calculations, it is found that this vibrational entropy change is mainly caused by softening in the high-entropy phase of acoustic modes that correspond to molecular rotations. We attribute this behaviour to the contrast between an 'interlocked' state in the low-entropy phase and sphere-like behaviour in the high-entropy phase. Although adamantane is a simple van der Waals solid with near-spherical molecules, this approach can be leveraged for the design of more complex barocaloric molecular crystals. Moreover, this study shows that supercell lattice dynamics calculations can accurately map the effect of orientational disorder on the phonon spectrum, paving the way for studying the vibrational entropy, thermal conductivity, and other thermodynamic effects in more complex materials.