论文标题
线图对比度学习链接预测
Line Graph Contrastive Learning for Link Prediction
论文作者
论文摘要
链接预测任务专注于预测可能的未来连接。大多数现有研究通过节点对的不同相似性分数来衡量链接的可能性,并预测节点之间的联系。但是,基于相似性的方法在节点上的信息丢失和相似性指数上的概括能力方面面临一些挑战。为了解决上述问题,我们提出了一种线图对比度学习(LGCL)方法,以获取具有多个观点的丰富信息。 LGCL通过使用目标节点对的H-HOP子图采样获得了子图视图。将采样的子图转换为线图后,链接预测任务将转换为节点分类任务,图形卷积进度可以从图中更有效地学习边缘嵌入。然后,我们在线路图上设计了一个新颖的跨尺度对比学习框架,以及最大化它们的相互信息的子图,以融合结构和特征信息。实验结果表明,所提出的LGCL的表现优于最新方法,并且在概括和鲁棒性方面具有更好的性能。
Link prediction tasks focus on predicting possible future connections. Most existing researches measure the likelihood of links by different similarity scores on node pairs and predict links between nodes. However, the similarity-based approaches have some challenges in information loss on nodes and generalization ability on similarity indexes. To address the above issues, we propose a Line Graph Contrastive Learning(LGCL) method to obtain rich information with multiple perspectives. LGCL obtains a subgraph view by h-hop subgraph sampling with target node pairs. After transforming the sampled subgraph into a line graph, the link prediction task is converted into a node classification task, which graph convolution progress can learn edge embeddings from graphs more effectively. Then we design a novel cross-scale contrastive learning framework on the line graph and the subgraph to maximize the mutual information of them, so that fuses the structure and feature information. The experimental results demonstrate that the proposed LGCL outperforms the state-of-the-art methods and has better performance on generalization and robustness.