论文标题
使用人口覆盖范围评估和优化听力援助的自构方法
Evaluating and Optimizing Hearing-Aid Self-Fitting Methods using Population Coverage
论文作者
论文摘要
轻度到中度听力损失的成年人可以使用非处方助听器来治疗他们的听力损失,而传统的听力护理费用很少。这些产品结合了自构方法,可让最终用户在没有听力学家的帮助下配置其助听器。一种自构方法可帮助用户配置收益频率响应,以控制传入声音的每个频段的放大。本文考虑了如何设计有效的自身方法,以及我们是否可以在不诉诸昂贵的用户研究的情况下评估其设计的某些方面。大多数现有的拟合方法都提供了各种用户界面,以允许用户从预定的一组预设中选择配置。我们提出了一个新颖的指标,用于通过计算其人口覆盖范围来评估基于预设的方法的性能。人口覆盖范围估计可以找到他们喜欢的配置的用户的比例。我们方法的一个独特方面是一个概率模型,该模型捕获了用户的独特偏好与其他听力损失相似的用户的不同。接下来,我们开发用于确定预设以最大化人口覆盖率的方法。探索性结果表明,所提出的算法可以有效地选择比基于聚类的方法更高的人口覆盖率的少数预设。此外,我们可以使用算法来配置基于滑块的方法的增量数。
Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids to treat their hearing loss at a fraction of traditional hearing care costs. These products incorporate self-fitting methods that allow end-users to configure their hearing aids without the help of an audiologist. A self-fitting method helps users configure the gain-frequency responses that control the amplification for each frequency band of the incoming sound. This paper considers how to design effective self-fitting methods and whether we may evaluate certain aspects of their design without resorting to expensive user studies. Most existing fitting methods provide various user interfaces to allow users to select a configuration from a predetermined set of presets. We propose a novel metric for evaluating the performance of preset-based approaches by computing their population coverage. The population coverage estimates the fraction of users for which it is possible to find a configuration they prefer. A unique aspect of our approach is a probabilistic model that captures how a user's unique preferences differ from other users with similar hearing loss. Next, we develop methods for determining presets to maximize population coverage. Exploratory results demonstrate that the proposed algorithms can effectively select a small number of presets that provide higher population coverage than clustering-based approaches. Moreover, we may use our algorithms to configure the number of increments for slider-based methods.