论文标题

线性生长的图具有有限的树宽

Graphs of Linear Growth have Bounded Treewidth

论文作者

Campbell, Rutger, Distel, Marc, Gollin, J. Pascal, Harvey, Daniel J., Hendrey, Kevin, Hickingbotham, Robert, Mohar, Bojan, Wood, David R.

论文摘要

如果对于\ Mathcal {g} $,以及每个正整数$ r $,每一个$ g $的每个$ g $ a radius aft $ r $ cun $ r $ cub of o(r $ o(r)$ o(r)$ r $,则Graph类$ \ MATHCAL {G} $具有线性增长。在本文中,我们表明每个具有线性生长的图形类都有界限。

A graph class $\mathcal{G}$ has linear growth if, for each graph $G \in \mathcal{G}$ and every positive integer $r$, every subgraph of $G$ with radius at most $r$ contains $O(r)$ vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源