论文标题
线性生长的图具有有限的树宽
Graphs of Linear Growth have Bounded Treewidth
论文作者
论文摘要
如果对于\ Mathcal {g} $,以及每个正整数$ r $,每一个$ g $的每个$ g $ a radius aft $ r $ cun $ r $ cub of o(r $ o(r)$ o(r)$ r $,则Graph类$ \ MATHCAL {G} $具有线性增长。在本文中,我们表明每个具有线性生长的图形类都有界限。
A graph class $\mathcal{G}$ has linear growth if, for each graph $G \in \mathcal{G}$ and every positive integer $r$, every subgraph of $G$ with radius at most $r$ contains $O(r)$ vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.