论文标题

FedGrec:联合图形推荐系统,懒惰更新潜在的嵌入

FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings

论文作者

Li, Junyi, Huang, Heng

论文摘要

推荐系统在行业中广泛用于改善用户体验。尽管取得了巨大的成功,但他们最近因收集私人用户数据而受到批评。联合学习(FL)是用于在无直接数据共享的情况下学习分布式数据的新范式。因此,提出了联合推荐人(FedRec)系统,以减轻对非分布的推荐系统的隐私问题。但是,FedRec系统与其非分布的对应物具有性能差距。主要原因是本地客户端具有不完整的用户相互作用图,因此FedRec Systems无法很好地利用间接的用户信息交互。在本文中,我们提出了联合图形建议系统(FedGrec)来减轻此差距。我们的FedGrec系统可以有效利用间接用户信息交互。更确切地说,在我们的系统中,用户和服务器在用户和项目中明确存储潜在的嵌入,其中潜在嵌入汇总了间接用户 - 项目交互的不同顺序,并用作本地培训期间缺少交互图的代表。我们进行广泛的经验评估,以验证使用潜在嵌入作为缺失相互作用图的效力;实验结果表明,与各种基线相比,我们系统的性能卓越。该论文的简短版本以\ href {https://federated-learning.org/fl-neurips-2022/} {fl-neurips'22 Workshop}}。

Recommender systems are widely used in industry to improve user experience. Despite great success, they have recently been criticized for collecting private user data. Federated Learning (FL) is a new paradigm for learning on distributed data without direct data sharing. Therefore, Federated Recommender (FedRec) systems are proposed to mitigate privacy concerns to non-distributed recommender systems. However, FedRec systems have a performance gap to its non-distributed counterpart. The main reason is that local clients have an incomplete user-item interaction graph, thus FedRec systems cannot utilize indirect user-item interactions well. In this paper, we propose the Federated Graph Recommender System (FedGRec) to mitigate this gap. Our FedGRec system can effectively exploit the indirect user-item interactions. More precisely, in our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions and are used as a proxy of missing interaction graph during local training. We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph; the experimental results show superior performance of our system compared to various baselines. A short version of the paper is presented in \href{https://federated-learning.org/fl-neurips-2022/}{the FL-NeurIPS'22 workshop}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源