论文标题

LIDARAUGMENT:搜索可扩展的3D激光雷达数据增强

LidarAugment: Searching for Scalable 3D LiDAR Data Augmentations

论文作者

Leng, Zhaoqi, Li, Guowang, Liu, Chenxi, Cubuk, Ekin Dogus, Sun, Pei, He, Tong, Anguelov, Dragomir, Tan, Mingxing

论文摘要

数据增强对于训练高性能3D对象检测器的点云很重要。尽管最近为设计新数据增强而做出了努力,但也许令人惊讶的是,大多数最先进的3D检测器仅使用一些简单的数据增强。特别是,与2D图像数据的增加不同,3D数据增加需要考虑输入数据的不同表示,并且需要针对不同模型进行自定义,这引入了重要的开销。在本文中,我们采用了一种基于搜索的方法,并提出了Lidaraugment,这是3D对象检测的实用有效的数据增强策略。与以前的方法不同的方法在指数较大的搜索空间中调整了所有增强策略,我们建议将每个数据增强的搜索空间分解和对齐,从而将20+超级参数降低到2,并显着降低搜索复杂性。我们显示,可以通过简单的2D网格搜索为具有不同输入表示的不同模型体系结构定制Lidaraugment,并始终改善基于卷积的Upillars/starnet/rsn和基于变压器的Swformer。此外,Lidaraugment减轻过度拟合,使我们可以将3D检测器扩展到更大的容量。特别是,通过与最新的3D探测器结合使用,我们的Lidaraugment在Waymo Open DataSet上实现了新的74.8 MAPH L2。

Data augmentations are important in training high-performance 3D object detectors for point clouds. Despite recent efforts on designing new data augmentations, perhaps surprisingly, most state-of-the-art 3D detectors only use a few simple data augmentations. In particular, different from 2D image data augmentations, 3D data augmentations need to account for different representations of input data and require being customized for different models, which introduces significant overhead. In this paper, we resort to a search-based approach, and propose LidarAugment, a practical and effective data augmentation strategy for 3D object detection. Unlike previous approaches where all augmentation policies are tuned in an exponentially large search space, we propose to factorize and align the search space of each data augmentation, which cuts down the 20+ hyperparameters to 2, and significantly reduces the search complexity. We show LidarAugment can be customized for different model architectures with different input representations by a simple 2D grid search, and consistently improve both convolution-based UPillars/StarNet/RSN and transformer-based SWFormer. Furthermore, LidarAugment mitigates overfitting and allows us to scale up 3D detectors to much larger capacity. In particular, by combining with latest 3D detectors, our LidarAugment achieves a new state-of-the-art 74.8 mAPH L2 on Waymo Open Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源