论文标题

雾网络中的弹性和负载平衡:多标准决策分析方法

Resilience and Load Balancing in Fog Networks: A Multi-Criteria Decision Analysis Approach

论文作者

Ebrahim, Maad, Hafid, Abdelhakim

论文摘要

云计算的出现使智能环境的物联网应用程序的扩散。但是,这些资源的距离使它们不适合延迟敏感的应用程序。因此,已经出现了雾计算,可以通过分布式资源提供邻近的功能。这些有限的资源可以使用无状态的Micro Fog Service复制品的概念来协作,以服务分布式的IoT应用程序工作流,该复制品可提供弹性并在面对失败时保持服务可用性。负载平衡通过将工作负载最佳地分配给适当的服务,即在雾节点之间分配负载以公平利用计算和网络资源并最大程度地减少执行延迟,从而支持这项协作。在本文中,我们建议使用Electre,一种多标准决策分析(MCDA)方法,以有效平衡雾环境中的负载。我们考虑了做出服务选择决策的多个目标,包括计算和网络负载信息。我们以不平衡的拓扑设置评估我们的方法,并具有异质的工作量要求。据我们所知,这是第一次使用基于元素的方法来平衡雾环境中的负载。通过模拟,我们将提出方法的性能与通常在实践中使用的传统基线方法进行了比较,即随机,圆形旋转,最近的节点和最快的服务选择算法。就整个系统性能而言,我们的方法的表现优于这些方法,最大提高了67%。

The advent of Cloud Computing enabled the proliferation of IoT applications for smart environments. However, the distance of these resources makes them unsuitable for delay-sensitive applications. Hence, Fog Computing has emerged to provide such capabilities in proximity to end devices through distributed resources. These limited resources can collaborate to serve distributed IoT application workflows using the concept of stateless micro Fog service replicas, which provides resiliency and maintains service availability in the face of failures. Load balancing supports this collaboration by optimally assigning workloads to appropriate services, i.e., distributing the load among Fog nodes to fairly utilize compute and network resources and minimize execution delays. In this paper, we propose using ELECTRE, a Multi-Criteria Decision Analysis (MCDA) approach, to efficiently balance the load in Fog environments. We considered multiple objectives to make service selection decisions, including compute and network load information. We evaluate our approach in a realistic unbalanced topological setup with heterogeneous workload requirements. To the best of our knowledge, this is the first time ELECTRE-based methods are used to balance the load in Fog environments. Through simulations, we compared the performance of our proposed approach with traditional baseline methods that are commonly used in practice, namely random, Round-Robin, nearest node, and fastest service selection algorithms. In terms of the overall system performance, our approach outperforms these methods with up to 67% improvement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源