论文标题

亮点:使用增强学习的增强数据的通用交通信号控制方法

ADLight: A Universal Approach of Traffic Signal Control with Augmented Data Using Reinforcement Learning

论文作者

Wang, Maonan, Xu, Yutong, Xiong, Xi, Kan, Yuheng, Xu, Chengcheng, Pun, Man-On

论文摘要

流量信号控制有可能减少动态网络中的拥塞。最近的研究表明,通过加强学习(RL)方法控制交通信号可以大大减少平均等待时间。但是,现有方法的缺点是,它们需要模型重新进行与不同结构的新交集。在本文中,我们提出了一种新型的增强学习方法,并使用增强数据(亮点)来训练与不同结构的交叉点的通用模型。我们提出了一种新的代理设计,该设计结合了具有设置当前相位持续时间的运动和动作的功能,以允许广义模型具有相同的结构在不同的交叉点上。开发了一种名为\ textIt {Movers Shuffle}的新数据增强方法,以改善概括性能。我们还测试了通用模型,该模型在城市流动性(SUMO)的模拟中进行了新的交集。结果表明,我们的方法的性能与直接在单个环境中训练的模型接近(仅损失了平均等待时间5%),我们可以减少培训时间的80%以上,从而节省了许多计算资源在交通信号灯的可扩展操作中。

Traffic signal control has the potential to reduce congestion in dynamic networks. Recent studies show that traffic signal control with reinforcement learning (RL) methods can significantly reduce the average waiting time. However, a shortcoming of existing methods is that they require model retraining for new intersections with different structures. In this paper, we propose a novel reinforcement learning approach with augmented data (ADLight) to train a universal model for intersections with different structures. We propose a new agent design incorporating features on movements and actions with set current phase duration to allow the generalized model to have the same structure for different intersections. A new data augmentation method named \textit{movement shuffle} is developed to improve the generalization performance. We also test the universal model with new intersections in Simulation of Urban MObility (SUMO). The results show that the performance of our approach is close to the models trained in a single environment directly (only a 5% loss of average waiting time), and we can reduce more than 80% of training time, which saves a lot of computational resources in scalable operations of traffic lights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源