论文标题
非全能填充物和魔鬼的楼梯在多体极性上引起的魔鬼柱和魔鬼的楼梯
Emergent Mott-insulators at non-integer fillings and devil's staircase induced by attractive interaction in many-body polarons
论文作者
论文摘要
我们研究了由多体偏极组成的超电原子系统的基态特性,该系统是由杂质原子形成的质晶格形成的准原子,浸入了Bose-Einstein冷凝水中。我们发现极性之间最近的邻居吸引人的相互作用会引起该系统特殊的丰富物理学。在相对较浅的光学晶格中,有吸引力的相互作用可以使系统处于自结合的超氟相位,其粒子密度分布表现出一种自我浓缩的结构。虽然在相对深的光学晶格中,即使全局填充因子不是整数,但有吸引力的相互作用也可以推动形成莫特绝缘体阶段的系统。有趣的是,在Mott-undulator制度中,该系统可以支持一系列不同的Mott-Mott-umplator,其有效的密度就具有有吸引力的相互作用的强度表现出魔鬼的楼梯结构。对相关实验参数的详细估计表明,在当前的实验设置中可以很容易地观察到这些丰富的物理学。
We investigate the ground state properties of an ultracold atom system consisting of many-body polarons, quasiparticles formed by impurity atoms in optical lattices immersing in a Bose-Einstein condensate. We find the nearest-neighbor attractive interaction between polarons can give rise to rich physics that is peculiar to this system. In a relatively shallow optical lattice, the attractive interaction can drive the system being in a self-bound superfluid phase with its particle density distribution manifesting a self-concentrated structure. While in a relatively deep optical lattice, the attractive interaction can drive the system forming the Mott-insulator phase even though the global filling factor is not integer. Interestingly, in the Mott-insulator regime, the system can support a series of different Mott-insulators with their effective density manifesting a devil's staircase structure with respect to the strength of attractive interaction. Detailed estimation on relevant experimental parameters shows that these rich physics can be readily observed in current experimental setups.