论文标题
带有$ \ mathbb {s}^{4m+3} $的正面爱因斯坦指标为主要轨道
Positive Einstein Metrics with $\mathbb{S}^{4m+3}$ as Principal Orbit
论文作者
论文摘要
我们证明,在$ \ mathbb {hp}^{m+1} \ sharp \ edline {\ mathbb {hp {hp}}^{m+1} $ for $ m \ geq 2 $上。根据第一个爱因斯坦公制的存在,我们给出了一个标准,以检查$ \ Mathbb {hp}^{m+1} \ sharp \ edline {\ mathbb {\ mathbb {hp {hp}}}^{m+1} $。我们还调查了同一性的存在,一个$ \ Mathbb {s}^{4M+4} $上的一个正面爱因斯坦指标,并证明存在于$ \ Mathbb {s}^8 $上的非标准爱因斯坦度量。
We prove that there exists at least one positive Einstein metric on $\mathbb{HP}^{m+1}\sharp \overline{\mathbb{HP}}^{m+1}$ for $m\geq 2$. Based on the existence of the first Einstein metric, we give a criterion to check the existence of a second Einstein metric on $\mathbb{HP}^{m+1}\sharp \overline{\mathbb{HP}}^{m+1}$. We also investigate the existence of cohomogeneity one positive Einstein metrics on $\mathbb{S}^{4m+4}$ and prove the existence of a non-standard Einstein metric on $\mathbb{S}^8$.