论文标题

远程海森堡链中的分数动态和模量不稳定

Fractional Dynamics and Modulational Instability in Long-Range Heisenberg Chains

论文作者

Youwa, Laetitia Mbetkwe, Nguenang, Jean Pierre, Paglan, Paul André, Dauxois, Thierry, Trombettoni, Andrea, Ruffo, Stefano

论文摘要

我们研究了在存在远距离相互作用的情况下铁磁旋转链的有效动力学。我们认为在一个维度上的海森伯格汉密尔顿人,通过幂律的远程交换与指数$α$的旋转耦合。我们在$ z $方向上增加了汉密尔顿的各向异性。在半经典方法的框架中,我们使用Holstein-Primakoff转换来得出有效的远程离散非线性schrödinger方程。然后,我们执行连续性极限,并获得分数非线性schrödinger的方程。最后,我们研究了连续限制中平面波的调节不稳定性,并证明,在与短距离的情况下,平面波在$α<3 $的情况下在调制上是不稳定的。我们还研究了调节不稳定性生长速率和关键波数对哈密顿量和指数$α$的参数的依赖性。

We study the effective dynamics of ferromagnetic spin chains in presence of long-range interactions. We consider the Heisenberg Hamiltonian in one dimension for which the spins are coupled through power-law long-range exchange interactions with exponent $α$. We add to the Hamiltonian an anisotropy in the $z$-direction. In the framework of a semiclassical approach, we use the Holstein-Primakoff transformation to derive an effective long-range discrete nonlinear Schrödinger equation. We then perform the continuum limit and we obtain a fractional nonlinear Schrödinger-like equation. Finally, we study the modulational instability of plane-waves in the continuum limit and we prove that, at variance with the short-range case, plane waves are modulationally unstable for $α< 3$. We also study the dependence of the modulation instability growth rate and critical wave-number on the parameters of the Hamiltonian and on the exponent $α$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源