论文标题
基于数量张量火车的量子系统相关功能的多尺度时空ANSATZ
Multiscale space-time ansatz for correlation functions of quantum systems based on quantics tensor trains
论文作者
论文摘要
量子系统的相关函数 - 量子场理论中的中心对象 - 在高维时空域中定义。因此,他们的数值处理受到维数的诅咒,这阻碍了复杂的多体理论在有趣的问题中的应用。在这里,我们提出了一个基于数量张量列车(QTT)的量子系统相关函数的多尺度时空ANSATZ,``Qubits''描述了指数不同的长度尺度。然后,ANSATZ通过将所得的高维张量分解为张量列(也称为矩阵乘积状态),假设长度尺度的分离。我们在数值上验证了各种平衡和非平衡系统的ANSATZ,并证明了有挑战性的情况的几个数量级的压缩率。示意方程的基本构件,例如卷积或傅立叶变换,以压缩形式制定。我们从数值上证明了dyson和Bethe-Salpeter方程所提出的方法的稳定性和效率。 {QTT表示}提供了一个统一的框架,用于实现量子字段理论的有效计算。
Correlation functions of quantum systems -- central objects in quantum field theories -- are defined in high-dimensional space-time domains. Their numerical treatment thus suffers from the curse of dimensionality, which hinders the application of sophisticated many-body theories to interesting problems. Here, we propose a multi-scale space-time ansatz for correlation functions of quantum systems based on quantics tensor trains (QTT), ``qubits'' describing exponentially different length scales. The ansatz then assumes a separation of length scales by decomposing the resulting high-dimensional tensors into tensor trains (known also as matrix product states). We numerically verify the ansatz for various equilibrium and nonequilibrium systems and demonstrate compression rates of several orders of magnitude for challenging cases. Essential building blocks of diagrammatic equations, such as convolutions or Fourier transforms are formulated in the compressed form. We numerically demonstrate the stability and efficiency of the proposed methods for the Dyson and Bethe-Salpeter equations. {The QTT representation} provides a unified framework for implementing efficient computations of quantum field theories.