论文标题

整体吸引的线框解析:从监督到自我监督的学习

Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised Learning

论文作者

Xue, Nan, Wu, Tianfu, Bai, Song, Wang, Fu-Dong, Xia, Gui-Song, Zhang, Liangpei, Torr, Philip H. S.

论文摘要

本文介绍了整体吸引的线框解析(HAWP),这是一种几何分析的方法,该方法分析了包含线段和交界处形成的线框的2D图像。 HAWP利用了使用封闭形式的4D几何矢量字段编码线段的典型整体吸引力(HAT)字段表示。拟议的HAWP由三个由端到端和帽子驱动的设计授权的顺序组件组成:(1)从帽子场和热图中产生一组密集的线段,(2)将密集的线段绑定到稀疏的端点,以限制稀疏的端点,以产生最初的端口端口,并(3)通过(3)通过(3)通过(3)端点的端点(3),并将端点(3)组成的端点(3),以及(3),(3),(3)extpoint offorter(3)deppoint(3)deppoint(3) loialign)模块,可捕获端点建议和帽子场之间的共发生,以更好地验证。多亏了我们的新颖设计,HAWPV2在全面监督的学习中表现出了很强的表现,而HAWPV3在自我监督的学习中表现出色,实现了出色的可重复性得分和有效的培训(单个GPU上的24 GPU小时)。此外,HAWPV3在不提供线框的地面真相标签的情况下,在分发图像中解析线框具有有希望的潜力。

This article presents Holistically-Attracted Wireframe Parsing (HAWP), a method for geometric analysis of 2D images containing wireframes formed by line segments and junctions. HAWP utilizes a parsimonious Holistic Attraction (HAT) field representation that encodes line segments using a closed-form 4D geometric vector field. The proposed HAWP consists of three sequential components empowered by end-to-end and HAT-driven designs: (1) generating a dense set of line segments from HAT fields and endpoint proposals from heatmaps, (2) binding the dense line segments to sparse endpoint proposals to produce initial wireframes, and (3) filtering false positive proposals through a novel endpoint-decoupled line-of-interest aligning (EPD LOIAlign) module that captures the co-occurrence between endpoint proposals and HAT fields for better verification. Thanks to our novel designs, HAWPv2 shows strong performance in fully supervised learning, while HAWPv3 excels in self-supervised learning, achieving superior repeatability scores and efficient training (24 GPU hours on a single GPU). Furthermore, HAWPv3 exhibits a promising potential for wireframe parsing in out-of-distribution images without providing ground truth labels of wireframes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源