论文标题
双曲线表面上最短的非简单闭合大地测量学
The shortest non-simple closed geodesics on hyperbolic surfaces
论文作者
论文摘要
本文探讨了双曲线表面上的封闭测量学。我们表明,对于足够大的$ k $,最短的封闭地球固定器具有至少$ k $的自身交流,在所有双曲线表面中都采用,它们都躺在一条理想的裤子上,长度为$ 2 \ arccosh(2k+1)$。
This article explores closed geodesics on hyperbolic surfaces. We show that, for sufficiently large $k$, the shortest closed geodesics with at least $k$ self-intersections, taken among all hyperbolic surfaces, all lie on an ideal pair of pants and have length $2\arccosh(2k+1)$.