论文标题

双曲线表面上最短的非简单闭合大地测量学

The shortest non-simple closed geodesics on hyperbolic surfaces

论文作者

Basmajian, Ara, Parlier, Hugo, Vo, Hanh

论文摘要

本文探讨了双曲线表面上的封闭测量学。我们表明,对于足够大的$ k $,最短的封闭地球固定器具有至少$ k $的自身交流,在所有双曲线表面中都采用,它们都躺在一条理想的裤子上,长度为$ 2 \ arccosh(2k+1)$。

This article explores closed geodesics on hyperbolic surfaces. We show that, for sufficiently large $k$, the shortest closed geodesics with at least $k$ self-intersections, taken among all hyperbolic surfaces, all lie on an ideal pair of pants and have length $2\arccosh(2k+1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源