论文标题

知识从答案排名转移到答案

Knowledge Transfer from Answer Ranking to Answer Generation

论文作者

Gabburo, Matteo, Koncel-Kedziorski, Rik, Garg, Siddhant, Soldaini, Luca, Moschitti, Alessandro

论文摘要

最近的研究表明,可以通过从排名最高的答案句子(称为genqa)产生改进的答案来改进基于答案句子选择(AS2)的问题答案(QA)。这允许将多个候选人的信息综合为简洁,自然的答案。但是,为GenQA模型创建大规模监督培训数据非常具有挑战性。在本文中,我们建议通过从训练有素的AS2模型中转移知识来培训GenQA模型,以克服上述问题。首先,我们使用AS2模型来为一组问题提供排名。然后,我们将排名最高的候选人用作生成目标,下一个K顶级候选者作为训练GenQA模型的背景。我们还建议使用AS2模型预测评分来减少加权和评分条件的输入/输出成型,以帮助知识传递。我们对三个公共和一个大型工业数据集的评估证明了我们的方法优于AS2基线,以及使用监督数据培训的GenQA。

Recent studies show that Question Answering (QA) based on Answer Sentence Selection (AS2) can be improved by generating an improved answer from the top-k ranked answer sentences (termed GenQA). This allows for synthesizing the information from multiple candidates into a concise, natural-sounding answer. However, creating large-scale supervised training data for GenQA models is very challenging. In this paper, we propose to train a GenQA model by transferring knowledge from a trained AS2 model, to overcome the aforementioned issue. First, we use an AS2 model to produce a ranking over answer candidates for a set of questions. Then, we use the top ranked candidate as the generation target, and the next k top ranked candidates as context for training a GenQA model. We also propose to use the AS2 model prediction scores for loss weighting and score-conditioned input/output shaping, to aid the knowledge transfer. Our evaluation on three public and one large industrial datasets demonstrates the superiority of our approach over the AS2 baseline, and GenQA trained using supervised data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源