论文标题
对加速磁共振成像的忠实深度灵敏度估计
A Faithful Deep Sensitivity Estimation for Accelerated Magnetic Resonance Imaging
论文作者
论文摘要
磁共振成像(MRI)是延长扫描时间的必不可少的诊断工具。为了减轻这一限制,先进的快速MRI技术吸引了广泛的研究兴趣。最近的深度学习表明,它在提高图像质量和重建速度方面的巨大潜力。忠实的线圈灵敏度估计对于MRI重建至关重要。但是,大多数深度学习方法仍然依赖于预估计的灵敏度图,而忽略了它们的不准确性,从而导致重建图像的质量降低。在这项工作中,我们提出了一个共同的深灵敏度估计和图像重建网络,称为JDSI。在删除图像伪像的过程中,它逐渐提供了具有高频信息的更忠实的灵敏度图,从而改善了图像重建。为了了解网络的行为,通过可视化网络中间结果来揭示灵敏度估计和图像重建的相互促进。在体内数据集和放射科医生读取器研究中的结果表明,对于基于校准和校准的无重构,拟议的JDSI在视觉上和定量上都可以实现最新的性能,尤其是当加速度因子很高时。此外,JDSI对患者具有良好的鲁棒性和自启动信号。
Magnetic resonance imaging (MRI) is an essential diagnostic tool that suffers from prolonged scan time. To alleviate this limitation, advanced fast MRI technology attracts extensive research interests. Recent deep learning has shown its great potential in improving image quality and reconstruction speed. Faithful coil sensitivity estimation is vital for MRI reconstruction. However, most deep learning methods still rely on pre-estimated sensitivity maps and ignore their inaccuracy, resulting in the significant quality degradation of reconstructed images. In this work, we propose a Joint Deep Sensitivity estimation and Image reconstruction network, called JDSI. During the image artifacts removal, it gradually provides more faithful sensitivity maps with high-frequency information, leading to improved image reconstructions. To understand the behavior of the network, the mutual promotion of sensitivity estimation and image reconstruction is revealed through the visualization of network intermediate results. Results on in vivo datasets and radiologist reader study demonstrate that, for both calibration-based and calibrationless reconstruction, the proposed JDSI achieves the state-of-the-art performance visually and quantitatively, especially when the acceleration factor is high. Additionally, JDSI owns nice robustness to patients and autocalibration signals.