论文标题

强大的自适应规定时间控制与参数相变的非线性系统

Robust Adaptive Prescribed-Time Control for Parameter-Varying Nonlinear Systems

论文作者

Ye, Hefu, Song, Yongduan

论文摘要

这是一个有趣的开放问题,可以实现具有未知,快速甚至突然发生变化参数的严格反馈系统的自适应定期控制。在本文中,我们借助几项设计和分析创新提出了解决方案。首先,通过使用时空变换,我们将原始系统通过有限的时间间隔转换为一个通过无限时间间隔的一个操作,从而允许Lyapunov渐近设计并重新铸造在有限的时间域中的规定时间稳定为无限时域上的无限型稳定。其次,为了处理具有未知变化边界的时变参数,我们使用变量方法的连接,并为参数估计建立三个独立的自适应定律(在反馈路径中未知参数的两个,一个用于输入路径中未知参数的参数),在此过程中,我们利用两个调谐功能来消除过度的启发。第三,为了实现转化系统的渐近收敛性,我们利用非线性阻尼设计和基于非试验器的设计来应对时变的扰动,最后,我们通过反临时尺度转换从渐近控制器获得了规定的时间控制方案。通过Lyapunov分析,挤压定理和两个基于常数变化方法构建的两个新颖的引理,证明了所有闭环信号和控制输入的界限。数值模拟验证了所提出的方法的有效性。

It is an interesting open problem to achieve adaptive prescribed-time control for strict-feedback systems with unknown and fast or even abrupt time-varying parameters. In this paper we present a solution with the aid of several design and analysis innovations. First, by using a spatiotemporal transformation, we convert the original system operational over finite time interval into one operational over infinite time interval, allowing for Lyapunov asymptotic design and recasting prescribed-time stabilization on finite time domain into asymptotic stabilization on infinite time domain. Second, to deal with time-varying parameters with unknown variation boundaries, we use congelation of variables method and establish three separate adaptive laws for parameter estimation (two for the unknown parameters in the feedback path and one for the unknown parameter in the input path), in doing so we utilize two tuning functions to eliminate over-parametrization. Third, to achieve asymptotic convergence for the transformed system, we make use of nonlinear damping design and non-regressor-based design to cope with time-varying perturbations, and finally, we derive the prescribed-time control scheme from the asymptotic controller via inverse temporal-scale transformation. The boundedness of all closed-loop signals and control input is proved rigorously through Lyapunov analysis, squeeze theorem, and two novel lemmas built upon the method of variation of constants. Numerical simulation verifies the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源