论文标题
照片真实的神经领域随机化
Photo-realistic Neural Domain Randomization
论文作者
论文摘要
合成数据是手动监督的可扩展替代方法,但它需要克服SIM到运行域间隙。虚拟世界和现实世界之间的这种差异是通过两种看似相反的方法来解决的:通过域随机化完全改善了模拟的现实主义或完全通过域的现实主义。在本文中,我们表明神经渲染的最新进展使我们称为照片现实的神经领域随机化(PNDR)。我们建议学习神经网络的组成,该组成是基于物理的射线示踪剂,仅凭场景几何形状产生了高质量的效果图。我们的方法是模块化的,由用于材料,照明和渲染的不同神经网络组成,从而可以在可区分管道中随机化不同的关键图像产生成分。一旦接受培训,我们的方法就可以与其他方法结合使用,并用于在线生成照片现实的图像增强,并且比通过传统的射线追踪更有效。我们通过两个下游任务证明了PNDR的有用性:6D对象检测和单眼深度估计。我们的实验表明,使用PNDR的培训可以使新场景的概括,并在现实世界中的转移方面显着超过了最新的现状。
Synthetic data is a scalable alternative to manual supervision, but it requires overcoming the sim-to-real domain gap. This discrepancy between virtual and real worlds is addressed by two seemingly opposed approaches: improving the realism of simulation or foregoing realism entirely via domain randomization. In this paper, we show that the recent progress in neural rendering enables a new unified approach we call Photo-realistic Neural Domain Randomization (PNDR). We propose to learn a composition of neural networks that acts as a physics-based ray tracer generating high-quality renderings from scene geometry alone. Our approach is modular, composed of different neural networks for materials, lighting, and rendering, thus enabling randomization of different key image generation components in a differentiable pipeline. Once trained, our method can be combined with other methods and used to generate photo-realistic image augmentations online and significantly more efficiently than via traditional ray-tracing. We demonstrate the usefulness of PNDR through two downstream tasks: 6D object detection and monocular depth estimation. Our experiments show that training with PNDR enables generalization to novel scenes and significantly outperforms the state of the art in terms of real-world transfer.