论文标题
部分可观测时空混沌系统的无模型预测
Self-supervised Graph-based Point-of-interest Recommendation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The exponential growth of Location-based Social Networks (LBSNs) has greatly stimulated the demand for precise location-based recommendation services. Next Point-of-Interest (POI) recommendation, which aims to provide personalised POI suggestions for users based on their visiting histories, has become a prominent component in location-based e-commerce. Recent POI recommenders mainly employ self-attention mechanism or graph neural networks to model complex high-order POI-wise interactions. However, most of them are merely trained on the historical check-in data in a standard supervised learning manner, which fail to fully explore each user's multi-faceted preferences, and suffer from data scarcity and long-tailed POI distribution, resulting in sub-optimal performance. To this end, we propose a Self-s}upervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation. In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs to uncover the transitional dependencies among POIs and capture a user's temporal interests. In order to counteract the scarcity and incompleteness of POI check-ins, we propose a novel self-supervised learning paradigm in \ssgrec, where the trajectory representations are contrastively learned from two augmented views on geolocations and temporal transitions. Extensive experiments are conducted on three real-world LBSN datasets, demonstrating the effectiveness of our model against state-of-the-art methods.