论文标题
部分可观测时空混沌系统的无模型预测
ALT: Boosting Deep Learning Performance by Breaking the Wall between Graph and Operator Level Optimizations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep learning models rely on highly optimized tensor libraries for efficient inference on heterogeneous hardware. Current deep compilers typically predetermine layouts of tensors and then optimize loops of operators. However, such unidirectional and one-off workflow strictly separates graph-level optimization and operator-level optimization into different system layers, missing opportunities for unified tuning. This paper proposes ALT, a compiler that performs joint graph- and operator-level optimizations for deep models. ALT provides a generic transformation module to manipulate layouts and loops with easy-to-use primitive functions. ALT further integrates an auto-tuning module that jointly optimizes graph-level data layouts and operator-level loops while guaranteeing efficiency. Experimental results show that ALT significantly outperforms state-of-the-art compilers (e.g., Ansor) in terms of both single operator performance (e.g., 1.5x speedup on average) and end-to-end inference performance (e.g., 1.4x speedup on average).